
This article was downloaded by: [National Forest Service Library]
On: 22 January 2013, At: 11:23
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Remote
Sensing
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tres20

Height and biomass of mangroves in
Africa from ICESat/GLAS and SRTM
Temilola E. Fatoyinbo a & Marc Simard b
a Biospheric Sciences Laboratory, NASA Goddard Space Flight
Center, Greenbelt, MD, 20771, USA
b Radar Systems, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA
Version of record first published: 17 Sep 2012.

To cite this article: Temilola E. Fatoyinbo & Marc Simard (2013): Height and biomass of mangroves
in Africa from ICESat/GLAS and SRTM, International Journal of Remote Sensing, 34:2, 668-681

To link to this article:  http://dx.doi.org/10.1080/01431161.2012.712224

PLEASE SCROLL DOWN FOR ARTICLE

For full terms and conditions of use, see: http://www.tandfonline.com/page/terms-and-
conditions
esp. Part II. Intellectual property and access and license types, § 11. (c) Open Access
Content

The use of Taylor & Francis Open articles and Taylor & Francis Open Select
articles for commercial purposes is strictly prohibited.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tres20
http://dx.doi.org/10.1080/01431161.2012.712224
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Remote Sensing
Vol. 34, No. 2, 20 January 2013, 668–681

Height and biomass of mangroves in Africa from ICESat/GLAS
and SRTM

Temilola E. Fatoyinboa* and Marc Simardb

aBiospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA;
bRadar Systems, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

(Received 1 November 2010; accepted 1 January 2012)

The accurate quantification of the three-dimensional (3-D) structure of mangrove forests
is of great importance, particularly in Africa where deforestation rates are high and the
lack of background data is a major problem. The objectives of this study are to esti-
mate (1) the total area, (2) canopy height distributions, and (3) above-ground biomass
(AGB) of mangrove forests in Africa. To derive the 3-D structure and biomass maps of
mangroves, we used a combination of mangrove maps derived from Landsat Enhanced
Thematic Mapper Plus (ETM+), lidar canopy height estimates from ICESat/GLAS
(Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System), and ele-
vation data from SRTM (Shuttle Radar Topography Mission) for the African continent.
The lidar measurements from the large footprint GLAS sensor were used to derive
local estimates of canopy height and calibrate the interferometric synthetic aperture
radar (InSAR) data from SRTM. We then applied allometric equations relating canopy
height to biomass in order to estimate AGB from the canopy height product. The total
mangrove area of Africa was estimated to be 25,960 km2 with 83% accuracy. The largest
mangrove areas and the greatest total biomass were found in Nigeria covering 8573 km2

with 132 × 106 Mg AGB. Canopy height across Africa was estimated with an over-
all root mean square error of 3.55 m. This error includes the impact of using sensors
with different resolutions and geolocation error. This study provides the first systematic
estimates of mangrove area, height, and biomass in Africa.

1. Introduction

The measurement of forest biomass is crucial for carbon cycle and climate change studies.
However, the amount and distribution of forest biomass is still poorly understood. Global
estimates of terrestrial biomass range from 385 × 109 to 650 × 109 Mg and forests alone
hold about 70–90% of the terrestrial biomass (Houghton, Hall, and Goetz 2009). Mangrove
forests cover only about 1% of the Earth’s terrestrial surface, but they are amongst the high-
est carbon-storing and carbon-exporting ecosystems globally (Dittmar et al. 2006; Donato
et al. 2011).

Estimating the distribution and biomass of mangrove forests is challenging due to the
complex physical environment of these forests. They are constantly inundated by diur-
nal tides and the characteristic above-ground roots often hinder in situ measurements.
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Large-scale field measurements of mangroves are therefore rare to non-existent. The
measurements that do exist are usually tailored towards a particular study, and the sampling
and measurement methodologies vary. In Africa, studies of mangroves have focused on
forest composition and zonation (Ukpong 1995; De Boer 2002; Adams, Colloty, and Bate
2004; Dahdouh-Guebas et al. 2004b), management and utilization of mangrove products
(Traynor and Hill 2008; Crona et al. 2009), the degradation of mangroves (Kruitwagen et al.
2008), and the ecology of mangrove-associated fauna (Faunce and Serafy 2006). Recent
assessments of mangrove cover in Africa are mostly limited to small areas, which makes
the comparison with countrywide statistics difficult (Dahdouh-Guebas et al. 2004b). With
the emergence of new remote-sensing methodologies, it is now possible to map the spatial
distribution and three-dimensional (3-D) structure of mangroves systematically (Simard
et al. 2006, 2008; Lucas et al. 2007; Fatoyinbo et al. 2008).

Optical remote-sensing techniques have been proved to be a reliable tool for the
estimation of mangrove forest areas globally, as shown by the large number of studies
(Aschbacher et al. 1995; Smith et al. 1998; Dahdouh-Guebas et al. 2000; Kovacs, Wang,
and Blanco-Correa 2001; Dahdouh-Guebas et al. 2002; Sulong et al. 2002; Cohen and Lara
2003; Wang et al. 2003; Gesche et al. 2004; Satyanarayana et al. 2001). The most compre-
hensive database of global mangrove cover is maintained by the UNEP World Conservation
Monitoring Centre, which published the World Mangrove Atlas (Spalding, Blasco, and
Field 1997). This database is based on a review of the mangrove literature and mangrove
cover estimated from multiple studies, data sets, and methodologies.

For Africa in particular, the data, methodologies, and time frame used to generate the
mangrove maps vary greatly, and a systematic methodology is needed to derive mangrove
cover estimates. An updated version of global maps has recently been published (Giri et al.
2011). However, to obtain a 3-D structure and biomass, in addition to spatial distribution,
active remote sensing from lidar and interferometric synthetic aperture radar (InSAR) is
the best measurement tool available.

The only global InSAR and lidar data sets currently available are from the spaceborne
SRTM (Shuttle Radar Topography Mission) and ICESat/GLAS (Ice, Cloud, and land
Elevation Satellite/Geoscience Laser Altimeter System). The SRTM (Farr et al. 2007) was
flown aboard the Space Shuttle Endeavour in February 2000 (Rodriguez, Morris, and Belz
2006). The SRTM measured terrain topography using dual-antennae C-band InSAR, cov-
ering areas from 56◦ S and 60◦ N. SRTM data are freely available at 1 arcsecond (30 m)
resolution for the USA and at 3 arcsecond (90 m) resolution globally. The SRTM DEM
(digital elevation model) is the most accurate, globally consistent elevation data set cov-
ering 80% of the Earth’s landmasses. The SRTM height measurement is in fact biased
by vegetation structure and can therefore be used to estimate canopy height (Kellndorfer
et al. 2004). The GLAS instrument recorded full-waveform altimetry data using a 1064 nm
laser that operated from 2003 to 2009. The lidar footprints have an approximate diameter
of 70 m, and are separated by 172 m along track (Schutz et al. 2005). In tropical regions,
sampling is greatly hindered by consistent cloud cover. Although it was primarily a mis-
sion designed for the measurement of ice-sheet dynamics, it has been used to measure
vegetation structure (Lefsky et al. 2005, 2007; Rosette et al. 2010). Previous work in the
Santa Marta region of Colombia (Simard et al. 2008) has shown the possibility of using
spaceborne InSAR and lidar data integration to measure the 3-D vegetation structure and
biomass of mangroves.

The objectives of this study are to (1) estimate mangrove heights on a continental
scale from InSAR and lidar integration, (2) estimate the total AGB of mangrove forests
in Africa, and (3) estimate the associated errors in our measurements. In this study, we
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670 T.E. Fatoyinbo and M. Simard

produce the first continental-scale maps of the spatial distribution, 3-D structure, and AGB
of mangroves in Africa. We address new challenges introduced by large-scale mapping
that are related to the variety of the biogeographical setting as well as the accuracy and
sampling of data.

2. Materials and methods

2.1. Study areas

In continental Africa, mangroves grow in coastal areas ranging from Mauritania (19◦ N)
in the northwest to Angola (10◦ S) in the southwest, and from South Africa (29◦ S) in
the southeast to Egypt (28◦ N) in the northeast, including Madagascar. On the Atlantic
coast of Western Africa, there are a total of seven indigenous species plus one introduced
mangrove palm, Nypa fruticans, which are also found on the Atlantic and Pacific coasts of
the Americas (Spalding, Blasco, and Field 1997). The indigenous species are Acrostichum
aureum, Avicennia germinans, Conocarpus erectus, Laguncularia racemosa, Rhizophora
harrisonii, R. mangle, and R. racemosa. The distribution limit of mangroves coincides with
arid regions with rainfall below 30 mm year−1 (Saenger and Bellan 1995).

On the Indian Ocean and Red Sea coastlines, the mangrove area is relatively small
compared to the total length of the coastline, due to very arid conditions in areas north of
the equator. There are 14 species of mangrove present in this area, which differ from the
west coast species. They are Acrostichum aureum, Avicenna marina, Bruguiera cylindri-
cal, B. gymnorrhiza, Ceriops tagal, Excoecaria agallocha, Heritiera littoralis, Lumnitzera
racemosa, Pemphis acidula, R. mucronata, R. racemosa, Sonneratia alba, S. caseolaris,
and Xylocarpus granatum. The largest diversity on the continent is found in Mozambique,
where 10 of the species are present (Spalding, Blasco, and Field 1997).

2.2. Mangrove extent from Landsat

Landsat TM GeoCover data were acquired from the University of Maryland Global Land
Cover Facility (http://glcf.umd.edu). The GeoCover data set consists of Landsat data that
have near global coverage and are available for three time periods ranging from 1973 to
2001. The Landsat ETM data used in this study had been orthorectified and georeferenced
(Tucker, Grant, and Dykstra 2004).

A total of 117 Landsat Enhanced Thematic Mapper Plus (ETM+) scenes from 1999 to
2002 were subset to include only low-elevation coastal areas where mangroves may be
present. All areas with elevations lower than 40 m were identified using the SRTM DEM.
An unsupervised Iterative Self-organizing Data Analysis (ISODATA) classification was
then applied to each Landsat image subset to discriminate mangroves from other types
of vegetation (Green et al. 1998; Fatoyinbo et al. 2008). The classification was filtered
using previously published maps, the World Mangrove Atlas (Spalding, Blasco, and Field
1997), visual inspection, and high-resolution imagery from Google Earth software. The
resulting classes were manually combined into a final classification with four land-cover
types (mangrove, other vegetation, bare ground, and water). In mangrove forests in Central
Africa, in particular Gabon and the Democratic Republic of Congo, no cloudless Landsat
scenes were available. In these areas with persistent cloud cover, we had to use cloud-free
Landsat data from 1989.

There are no local maps with known accuracy or sufficient field data available to assess
relative accuracy. Therefore, we based our estimation of classification accuracy on an inde-
pendent and systematic method for selecting validation points. We used points separated
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by 900 m (10 pixels) along a north–south running transect. The points were also spaced
by 0.5◦ longitude for the coast running from Senegal to Nigeria. For the remaining areas,
we used points separated by 900 m along an east–west running transect and spaced by 0.5◦
latitude. We assessed mapping accuracy by visual interpretation of high-resolution images
in Google Earth software. We used only those points that were classified or identified as
mangroves on the land-cover map or in Google Earth.

2.3. Measurement of tree height from lidar–InSAR fusion

ICESat/GLAS waveforms were acquired from the National Snow and Ice Data Center
(NSIDC) website (http://nsidc.org/data/icesat). We used the GLA14 (Global Land surface
Altimetry) data product to estimate canopy height. A total of 327 waveforms were used to
estimate tree height in this study, as GLAS footprints were not available in all mangrove
areas. GLAS data were available for sites in Senegal, Gambia, Guinea Bissau, Guinea,
Nigeria, Cameroon, Gabon, Congo, Angola, Mozambique, Tanzania, Kenya, Eritrea, and
Madagascar.

The GLA14 product was produced by fitting up to six Gaussian distributions to the
GLAS lidar waveform (Zwally et al. 2003). The shape and position of the Gaussian distri-
butions describe the vertical structure of the canopy within the lidar footprint. It is generally
assumed that the Gaussian peak furthest from the sensor is the ground return and the begin-
ning of the waveform signal (i.e. first return with voltage above the noise level) is the return
from the top of the canopy (Harding and Carabajal 2005). The cumulative distribution (i.e.
percentile) of the energy within the waveform is generally used to describe the vertical
distribution of scatterers (e.g. leaves and branches) within the canopy. The percentile is
computed from the beginning of the waveform (i.e. last return with voltage above the noise
level). Relative height (rhx) is defined as the distance between the point where the per-
centile energy reaches x (where x is the percentile value) and the location of the ground
peak defined as rh0 (Lefsky et al. 2005, 2007). Figure 1 shows an example of a waveform
and the location of GLAS footprints used.

We used only data from cloud-free profiles and excluded all waveforms that did not have
suitable data for determining tree heights. We excluded waveforms with a single Gaussian
peak, which generally meant that the footprint was over water or bare soil areas. We also
excluded waveforms with low signal-to-noise ratios (i.e. below 50), which may have been
reflected from clouds, or where Gaussian fits may include noise peaks. We found high
signal-to-noise ratios up to 300 in the GLAS data.

SRTM version 4 data were downloaded from the Consultative Group for Agricultural
Research (CGIAR). We used 30 SRTM scenes to build a single SRTM DEM covering the
coast of Africa mosaic. Using the mangrove land-cover map, we masked all non-mangrove
areas on the SRTM DEM. This resulted in an uncalibrated height map of the mangrove
areas. In forests, the C-band radar signal penetrates into the canopy to scatter with all for-
est components and the ground. Thus, the radar height estimate (i.e. radar phase centre)
lies somewhere within the canopy volume, which can be used to estimate canopy height
(Kellndorfer et al. 2004; Gillespie et al. 2006). Based on the reasonable assumption that
mangroves are located at sea level, the elevation measured by SRTM (i.e. phase centre)
is directly related to canopy height and can be calibrated to estimate the canopy height of
mangrove forests (Simard et al. 2006).

The SRTM pixels corresponding to the GLAS shots were extracted (Figure 1). We
assumed that rh75 represents the canopy height and derived linear regressions between the
GLAS point’s rh75 values (relative height of the canopy at the 75th percentile minus rh0)
and the DEM height (HSRTM) values to determine the regression equation of the form
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Waveform beginning

rh100

rh75

rh50
rh0

Waveform end

GLAS footprints

Waveform

Cumulative energy of  waveform

Relative height from percentile energy

Figure 1. GLAS footprint coverage over the Niger Delta mangrove ecosystem.

Note: Within each footprint, a waveform representing the canopy and ground profile is extracted to
derive tree canopy height.

rh75 = a × HSRTM + b, (1)

where a is the slope of the regression and b is the y intercept in metres. Studies of for-
est biomass worldwide have shown that there is a strong correlation between tree size, in
terms of diameter and height, and tree biomass. In general, the diameter at breast height
(DBH) of a tree is the strongest predictor of AGB (Chave et al. 2005). For mangrove
forests, a global stand height–biomass allometric equation was calculated by Saenger and
Snedaker (1993):

biomass
(
Mgha−1

) = 10.8 × H(m) + 35. (2)

This equation was obtained from 43 field data sets distributed globally R2 = 0.59 and
root mean square error (RMSE) = 43.8). To compute total AGB and AGB distribution of
mangroves on the continental scale, we used rh75 and Equation (2) to derive the biomass
values as this equation was computed for a large range of tree heights and was derived to
be applicable globally.

3. Results and discussion

All of the results were calculated and mapped on a per country basis to facilitate comparison
with previously published results and data distribution. The maps are freely available for
Google Earth software at http://www-radar.jpl.nasa.gov/coastal.
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3.1. Mangrove land-cover map

The total area of mangrove cover in Africa was found to be 25,960 km2 with 83%
accuracy. The five largest mangrove areas – in decreasing order – were found in (1) Nigeria,
(2) Mozambique, (3) Guinea Bissau, (4) Madagascar, and (5) Guinea. The smallest area of
mangroves is found in Mauritania at 0.4 km2. Nigeria, with a mangrove area of 8573 km2,
has the fourth largest mangrove area in the world, after Indonesia, Brazil, and Australia.
The overall accuracy of the land-cover map was 83%, considering 10% omissions and 7%
commissions, based on a total of 540 points (Table 1). The main sources of error in the land-
cover map were due to difficulties in distinguishing between mangrove forests and other
forest types, such as coastal forests or rainforests, and the presence of clouds, especially in
the equatorial regions. In Central Africa, the map accuracy was much lower, at 68%, due
to the high cloud cover. The land-cover maps for Nigeria, Cameroon, Tanzania, and Kenya
are presented in Figure 2 and the breakdown of mangrove area by state is presented in
Table 2.

Although it is not our objective to assess changes in the spatial extent of mangroves
over time, it is important to compare our results with previous studies. Overall, the land-
cover maps show that the mangrove area of Africa is smaller than the previously estimated

Table 1. Confusion matrix of mangrove land-cover classification in Africa.

Truth land cover

Class Mangrove Non-mangrove Total

Mangrove 449 39 488
Non-mangrove 52 0 52
Total 501 39 540

Note: The overall accuracy was 83% with 10% omissions and 7% commissions.

0
0

5

10

15

20

25

30

35

40

45

5 10 15 20

HSRTM (m)

rh
75

 G
L

A
S 

(m
)

rh75 = 1.07HSTRM + 1.70
R2 = 0.72

25 30 35 40

Figure 2. Canopy height regression between GLAS rh75 and SRTM phase centre to calibrate the
SRTM DEM.
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674 T.E. Fatoyinbo and M. Simard

Table 2. Area of mangrove cover and mean biomass per hectare per country.

Country Area (km2) Total biomass (Mg) Mean biomass (Mg ha−1)

Angola 154 1, 441, 200 93
Benin 18 137, 719 76
Cameroon 1, 483 25, 334, 900 171
Congo 15 267, 603 178
Côte d’Ivoire 32 406, 516 124
Djibouti 17 1, 653, 170 90
DRC 183 51, 570 140
Egypt 1 8344 117
Equatorial Guinea 181 2, 922, 420 161
Eritrea 49 640, 038 129
Gabon 1, 457 23, 840, 000 162
Gambia 519.11 5, 509, 300 106
Ghana 76 742, 925 97
Guinea 1, 889 18, 153, 800 108
Guinea Bissau 2, 806 31, 712, 300 113
Kenya 192 2, 294, 820 119
Liberia 189 2, 141, 860 113
Madagascar 2, 059 24, 856, 900 121
Mauritania 0.4 4156 95
Mozambique 3, 054 30, 974, 100 101
Nigeria 8, 573 94, 788, 000 111
Senegal 1, 200 11, 462, 100 95
Sierra Leone 955 10, 655, 600 112
Somalia 30 436, 907 143
Sudan 4 135, 626 113
South Africa 12 40, 018 100
Togo 2 15, 861 78
Tanzania 809 11, 037, 800 136
Africa 25, 960 301, 665, 553 116

30,000 km2 (Spalding, Blasco, and Field 1997; FAO 2007). However, the exact estimate
of changes in mangrove area due to natural and anthropogenic disturbances cannot be cal-
culated because of the differences in data collection methodologies, the variations in the
definition of mangrove forests, and the differences in the resolution of the data sets used in
the previous estimates. The large decreases in mangrove area estimates are in part due to
degradation in mangrove area but also due to different definitions of ‘mangrove areas’.

In many studies, mangrove area was overestimated because it was difficult to differ-
entiate between mangrove forests and adjacent mudflats, salt marshes, swamp forests, and
bare areas using low-resolution data (1 km × 1 km). In many tropical areas there is con-
sistent cloud cover that results in poor coverage from optical data. This is the case in many
of the tropical regions, with extreme discrepancies in Congo and Côte d’Ivoire for exam-
ple. Furthermore, certain studies include the ‘mangrove palm’ N. fruticans as a mangrove
species, whereas other studies do not. In this study, we did not include bare ground and
mudflats and also did not count uniform Nypa stands as mangrove areas as much as possi-
ble. Other very large differences in area measurement such as in Egypt, Côte d’Ivoire, and
Sudan are probably due to a lack of up-to-date studies and remotely sensed data leading to
poor mapping capabilities at the time of the study.

A direct comparison or estimation of the amount and rate of decrease or degrada-
tion in mangrove area throughout Africa is difficult, but we know that mangrove areas
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have decreased on the continent due to anthropogenic influences. Over 60% of Nigeria’s
mangrove stands are found in the Niger Delta region, yet studies in the Niger Delta have
shown that mangroves have greatly suffered from the development and rapid increase in
oil and gas exploitation in the area and the resulting pollution by oil spills, rapid urban-
ization, and dredging of canals, as well as the introduction of the invasive mangrove palm
N. fruticans (James et al. 2007). In general, decreases in mangrove area in West Africa
are primarily attributed to anthropogenic pressures in coastal regions leading to conversion
of land use for the production of salt and rice, urban and tourism development, pollution,
lack of sustainable resource management, and recently, the development of shrimp aqua-
culture (FAO 2007). In eastern Africa, large decreases in mangrove areas are primarily due
to felling for household products and conversion to urban, agricultural, and touristic areas
and diversion of fresh water from damming. These measurement inconsistencies justify the
need for a systematic approach to mangrove mapping as presented in this study.

3.2. Height and biomass measurements

The GLAS–SRTM calibration regression is shown in Figure 2. The resulting linear fit
between the height estimates from rh75 and the SRTM DEM is

rh75 = 1.07 × HSRTM + 1.70. (3)

The RMSE is 3.55 m. Calibrated canopy height maps for West and East Africa are presented
in Figure 3. In previous studies, a comparison of SRTM-derived canopy height with field
and airborne lidar data yielded RMSEs of 1.6 and 2.0 m, respectively (Simard et al. 2006;
Fatoyinbo et al. 2008). Our results are very similar to these studies. These are the lowest
errors that can be achieved using data fusion of these lidar and radar sensors without the
incorporation of field validation.
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Figure 3. SRTM canopy height maps of Nigeria–Cameroon (a) and Kenya–Tanzania (b).

Note: The overall extent of mangrove forests is shown in green.
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Based on our results, the equatorial areas of Africa are best suited for the growth of
tall mangroves but not for their expansion, since the actual mangrove area is small in these
countries. Average biomasses per country ranged from 76 Mg ha−1 in the Republic of
Benin to 178 Mg ha−1 in Congo. The greatest total biomass values were found in Nigeria
and Guinea Bissau and the lowest in Mauritania.

Previous studies of the canopy height, biomass, and distribution of mangroves have
shown that geographical setting is more important in determining mangrove structure and
distribution than the latitudinal distribution (Fatoyinbo et al. 2008). This is particularly
evident on the African continent, and especially in West Africa, where a great propor-
tion of mangroves grow within a small range of latitudes, but the forest area and structure
vary greatly. In Nigeria, mangroves are extensive and canopy height can be very tall, but
in adjacent Benin and Togo, their distribution is very limited and canopy height is short.
In Senegal, Gambia, Guinea Bissau, and Guinea, mangroves extend very far inland, up
to 160 km in Gambia, but at the same latitudes in East Africa, in Somalia, Djibouti, and
Eritrea, mangrove forests are sparse. Estuaries and deltas with extensive freshwater supply
are the most advantageous for mangrove growth, in terms of both height and extent, and
have a much greater influence than latitude. Indeed, all of the mangrove forests with large
areas, tall trees, and/or high biomass grow either in estuaries or in deltas.

3.3. Error analysis

The fact that we used three different data sets in this study also increases the incidence of
error in our calculations. In the land-cover classification, we observed 83% accuracy, with
17% errors from commissions and omissions from the classification. The systematic error
(i.e. bias) from the calibration equation was low at 1%.

Cloud cover was a major source of error, especially in central African nations, where
cloud cover is persistent. Some systematic but localized errors in the SRTM DEM resulted
in overestimation of tree height and biomass, but also in the omission of mangrove
areas. For example, on an island in the Niger Delta, the DEM indicated that canopy
height was 363 m. This is a common error with the SRTM DEM on islands, which
may have been caused by difficulties in SRTM interferometric phase unwrapping (i.e.
the method to retrieve elevation from the radar interferometric phase). Because this mea-
surement was too high for mangroves, this area was omitted from the height and biomass
estimation.

The geolocation error of the GLAS instrument ranges from 4.6 to 53.4 m (according
to NSIDC), which greatly influences the accuracy of height measurement, particularly if
the canopy is heterogeneous. The actual height derived from the GLAS waveform may
therefore not correspond to the mean canopy height of the SRTM pixel that is measured.
The height estimated from the lidar waveform is affected by forest composition and het-
erogeneity as canopy shape, reflective properties, and the associated photon interactions all
influence the structure of the waveform (North et al. 2010; Rosette et al. 2010). In addi-
tion, the waveform is most sensitive to the footprint centre, since laser gain decreases with
distance from the centre of the footprint. Mangrove forests are characterized by distinct
‘zones’ that are dependent on the location relative to the coast or river and that show great
heterogeneity in forest structure, type, and composition (Tomlinson 1994). When the GLAS
footprint is close to the border of two zones, this can result in large discrepancies in height
measurement (Figure 4). Although low in species composition, mangrove forests are very
heterogeneous, ranging from tall, dense forests to very short, sparse, shrubby areas within
a few hundred metres. The 70 m GLAS footprint is not always able to characterize this
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Figure 4. GLAS footprint locations (in red) on an SRTM height map.

Note: The two zoomed images on the right show that while the mean height value given by a footprint
is that of the SRTM pixel where the centre of the shot is located, the actual area measured by GLAS
can be in several SRTM pixels, resulting in height measurement error.

heterogeneity, resulting in discrepancies with SRTM measurements. For example, when
looking at the variance within a seemingly homogeneous forest in Cameroon, we found that
within a single 1 km2 patch, the standard deviation of canopy height was 5 m, showing that
the height within a forest can vary greatly within a small area (Figure 4). Therefore, since
the trees measured by SRTM and GLAS are not exactly the same, the differences between
height measurements and what we state as the error of measurement are inflated. The dif-
ferences in physical parameters measured by radar and lidar, in addition to differences in
resolution, also increase the height and biomass estimation error. These combinations of
sources of error are illustrated in Figure 5.

The identification of the ground location within the waveform influences the estimate
of canopy height and therefore also of biomass. In tidal forests, such as mangroves, the
height of the ground or of the water level may vary depending on the tidal level. This may
influence the GLAS ground return signal and therefore the relative height estimates. On the
other hand, microtopographic features will most likely average out by selecting the furthest
Gaussian peak as the ground. In this study, we chose to use rh75 as the height of the canopy,
as this measurement resulted in the lowest error compared to the SRTM measurement.

The RMSE of Equation (3) is 65.4 Mg ha−1. This error is high due to large variabil-
ity in the measurements made and the natural variability of the data set. Since this is a
global equation, it does not take into account local variability in height and biomass. There
is generally a great amount of uncertainty when working with height–biomass allometric
equations. Because height is not the most direct indicator of tree biomass (Chave et al.
2005), some error is always introduced into the estimate when deriving biomass from
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Figure 5. Example of differences in measurements by the two active radar and lidar sensors, which
shows that the heterogeneity of forest structure within an SRTM pixel and a GLAS footprint can
result in different height measurements from each sensor.

height. To obtain more accurate measurements of biomass from radar and lidar data, it
is crucial that more reliable allometric equations are developed as a function of vertical
structure parameters.

4. Conclusions

Mangroves are one of the most important ecosystems in coastal areas in terms of ecology
and economy, but they are still being destroyed and degraded at great rates. The lack of
field studies and homogeneous historical data has made the calculation of rates of change
in mangrove cover difficult. In this article, we produced the first systematic estimate of
mangrove cover, structure, and biomass for the entire African continent and Madagascar.
This map can now be used as a baseline, as the techniques used in this article allow recal-
culation and reproduction with updated estimates of canopy height and allometry in Africa
as well as comparison with the rest of the world.

The total area of mangrove forest in Africa for the period of 1999–2000 based on
the classification of Landsat ETM+ images is 25,960 km2, with the largest area found
in Nigeria at 8573 km2 and the smallest area in Mauritania with 0.4 km2. The overall accu-
racy of the map was 83%, considering 10% omissions and 7% commissions. This overall
estimate is lower than previous estimates of mangrove cover in the World Mangrove Atlas
(Spalding, Blasco, and Field 1997), mostly due to classification errors from high cloud
cover and difficulties in distinguishing between mangroves and adjacent forests. We do
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believe that there is an overall decrease in mangrove cover that can be attributed to defor-
estation and degradation of mangroves from anthropogenic pressures; however, we cannot
accurately quantify the rate and percentage decrease in area because of the differences in
methodology and data sets used in the various published estimates.

Since mangrove ecosystems are relatively homogeneous and mangroves grow on flat
terrain at sea level, the results from this study are some of the most accurate results we
can expect from a radar/lidar integration study. The height maps derived from SRTM and
GLAS data confirmed this type of data fusion to measure mangrove canopy height to be
appropriate, with an average RMSE of 3.55 m. This value includes the impact of canopy
heterogeneity on the remote-sensing measurement that is not geolocated. Previous studies
using SRTM and lidar data sets in Colombia measured canopy height with an accuracy
of 2.7 m (Simard et al. 2008). When similar methods using lidar were combined with field
data, the RMSE decreased to 1.6 m in Mozambique (Fatoyinbo et al. 2008). To achieve even
higher accuracy, or lower error, field validation of mangrove height and biomass calibration
should therefore be included in future studies.

Overall, only 327 usable GLAS footprints were found for all mangrove areas in Africa.
This is a very small sample size covering only 0.02% of the total mangrove area. This is,
however, the greatest number of systematic height measurements available. GLAS was not
optimized for vegetation measurement, but as the only spaceborne lidar, it is the only data
set available for continental-scale studies. We look forward to the future lidar and InSAR
missions, which will provide greater coverage over forested areas.

Acknowledgements
Dr Fatoyinbo would like to thank the National Aeronautics and Space Administration (NASA)
Postdoctoral Program for funding this research. The work presented in this article was conducted
at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, and
at the NASA Goddard Space Flight Center.

References
Adams, J. B., B. M. Colloty, and G. C. Bate. 2004. “The Distribution and State of Mangroves along

the Coast of Transkei, Eastern Cape Province, South Africa.” Wetlands Ecology and Management
12: 531–41.

Aschbacher, J., R. Ofren, J.-P. Delsol, T. B. Suselo, S. Vibulsresth, and T. Charuppat. 1995. “An
Integrated Comparative Approach to Mangrove Vegetation Mapping Using Advanced Remote
Sensing and GIS Technologies: Preliminary Results.” Hydrobiologica 295: 285–94.

Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, N.
Higuchi, T. Kira, J.P. Lescure, B.W. Nelson, H. Ogawa, H. Puig, B. Riera, and T. Yamakura. 2005.
“Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests.”
Oecologia 145: 87–99.

Cohen, M. C. L., and R. N. J. Lara. 2003. “Temporal Changes of Mangrove Vegetation Boundaries
in Amazonia: Application of GIS and Remote Sensing Techniques.” Wetlands Ecology and
Management 11, no. 4: 223–31.

Crona, B. I., P. Rönnbäck, N. Jiddawi, J. Ochiewo, S. Maghimbi, and S. Bandeira. 2009. “Murky
Water: Analyzing Risk Perception and Stakeholder Vulnerability Related to Sewage Impacts in
Mangroves of East Africa.” Global Environmental Change 19: 227–39.

Dahdouh-Guebas, F., R. De Bondt, P. D. Abeysinghe, J. G. Kairo, S. Cannicci, L. Triest, and N.
Koedam. 2004b. “Comparative Study of the Disjunct Zonation Pattern of the Grey Mangrove
Avicennia marina (Forsk.) Vierh. in Gazi Bay Kenya.” Bulletin of Marine Science 74: 237–52.

Dahdouh-Guebas, F., I. Van Pottelbergh, J. G. Kairo, S. Cannicci, and N. Koedam. 2004a. “Human-
Impacted Mangroves in Gazi Kenya: Predicting Future Vegetation Based on Retrospective
Remote Sensing, Social Surveys, and Tree Distribution.” Marine Ecology Progress Series 272:
77–92.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l F
or

es
t S

er
vi

ce
 L

ib
ra

ry
] 

at
 1

1:
23

 2
2 

Ja
nu

ar
y 

20
13

 



680 T.E. Fatoyinbo and M. Simard

Dahdouh-Guebas, F., A. Verheyden, W. De Genst, S. Hettiarachchi, and N. Koedam. 2000. “Four
Decade Vegetation Dynamics in Sri Lankan Mangroves as Detected from Sequential Aerial
Photography: A Case Study in Galle.” Bulletin of Marine Science 672: 741–59.

Dahdouh-Guebas, F., T. Zetterström, P. Rönnback, M. Troell, A. Wickramasinghe, and N. Koedam.
2002. “Recent Changes in Land-Use in the Pambala-Chilaw Lagoon Complex Sri Lanka,
Investigated Using Remote Sensing and GIS: Conservation of Mangroves vs. Development of
Shrimp Farming.” Environment, Development and Sustainability 42: 185–200.

De Boer, W. F. 2002. “The Rise and Fall of the Mangrove Forests in Maputo Bay, Mozambique.”
Wetlands Ecology and Management 10: 313–22.

Dittmar, T., N. Hertkorn, G. Kattner, and R. J. Lara. 2006. “Mangroves, a Major Source of Dissolved
Organic Carbon to the Oceans.” Global Biogeochemical Cycles 20: 1–7.

Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen.
2011. “Mangroves among the Most Carbon-Rich Tropical Forests and Key in Land-Use Carbon
Emissions.” Nature Geoscience 4: 293–7.

FAO (Food and Agriculture Organization of the United Nations). 2007. Mangroves of Africa
1980–2005: Country Reports. Forest Resources Assessment Working Paper No. 135. Rome:
FAO.

Farr, T. G., P. A. Rosen, E. Caro, R. T. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E.
Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank,
and D. Alsdorf. 2007. “The Shuttle Radar Topography Mission.” Review of Geophysics 45: 1–33.

Fatoyinbo, T. E., M. Simard, R. A. Washington-Allen, and H. H. Shugart. 2008. “Landscape-Scale
Extent, Height, Biomass, and Carbon Estimation of Mozambique’s Mangrove Forests with
Landsat ETM+ and Shuttle Radar Topography Mission Elevation Data.” Journal of Geophysical
Research 113: 1–13.

Faunce, C. H., and J. E. Serafy. 2006. “Mangroves as Fish Habitat: 50 Years of Field Studies.” Marine
Ecology Progress Series 318: 1–18.

Gesche, K., B. Michael, W. Stefan, and B. Gerald. 2004. “Mapping Land Cover and Mangrove
Structures with Remote Sensing Techniques: A Contribution to Asynoptic GIS in Support of
Coastal Management in North Brazil.” Environmental Management 34: 429–40.

Gillespie, T. W., B. R. Zutta, M. K. Early, and S. Saatchi. 2006. “Predicting and Quantifying
the Structure of Tropical Dry Forests in South Florida and the Neotropics Using Spaceborne
Imagery.” Global Ecology and Biogeography 153: 225–36.

Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek, and N. Duke. 2011.
“Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite
Data.” Global Ecology and Biogeography 20: 154–9.

Green, E. P., C. D. Clark, P. J. Mumby, A. J. Edwards, and A. C. Ellis. 1998. “Remote Sensing
Techniques for Mangrove Mapping.” International Journal of Remote Sensing 19: 935–56.

Harding, D., and C. Carabajal. 2005. “ICESat Waveform Measurements of Within-Footprint
Topographic Relief and Vegetation Vertical Structure.” Geophysical Research Letters 32: 1–4.

Houghton, R. A., F. G. Hall, and S. J. Goetz. 2009. “Importance of Biomass in the Global Carbon
Cycle.” Journal of Geophysical Research 114: 1–13.

James, G. K., J. O. Adegoke, S. Ekechukwu, P. Nwilo, and J. Akinyede. 2007. “Satellite-Based
Assessment of the Extent and Changes in the Mangrove Ecosystem of the Niger Delta.” Marine
Geodesy 30: 249–67.

Kellndorfer, J., W. Walker, L. Pierce, C. Dobson, J. A. Fites, C. Hunsaker, J. Vona, and M. Clutter.
2004. “Vegetation Height Estimation from Shuttle Radar Topography Mission and National
Elevation Datasets.” Remote Sensing of Environment 933: 339–58.

Kovacs, J. M., J. Wang, and M. Blanco-Correa. 2001. “Mapping Disturbances in a Mangrove Forest
using Multi-date Landsat TM Imagery.” Environmental Management 27, no. 5: 763–76.

Kruitwagen, G., H. Pratap, A. Covaci, and S. W. Bonga. 2008. “Status of Pollution in Mangrove
Ecosystems along the Coast of Tanzania.” Marine Pollution Bulletin 56: 1022–31.

Lefsky, M., D. Harding, M. Keller, W. Cohen, C. Carabajal, F. Del Bom Espirito-Santo, M. Hunter, R.
De Oliveira Jr, and P. De Camargo. 2005. “Estimates of Forest Canopy Height and Aboveground
Biomass Using ICESat.” Geophysical Research Letters 32: 1–4.

Lefsky, M. A., M. Keller, Y. Pang, P. De Camargo, and M. O. Hunter. 2007. “Revised Method for
Forest Canopy Height Estimation from the Geoscience Laser Altimeter System Waveforms.”
Journal of Applied Remote Sensing 1: 1–18.

Lucas, R. M., A. L. Mitchell, A. Rosenqvist, C. Proisy, A. Melius, and C. Ticehurst. 2007.
“The Potential of L-Band SAR for Quantifying Mangrove Characteristics and Change: Case

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l F
or

es
t S

er
vi

ce
 L

ib
ra

ry
] 

at
 1

1:
23

 2
2 

Ja
nu

ar
y 

20
13

 



International Journal of Remote Sensing 681

Studies from the Tropics.” Aquatic Conservation: Marine and Freshwater Ecosystems 173:
245–64.

North, P. R. J., J. A. B. Rosette, J. C. Suárez, and S. O. Los. 2010. “A Monte Carlo Radiative Transfer
Model of Satellite Waveform LiDAR.” International Journal of Remote Sensing 31: 1343–58.

Rodriguez, E., E. Morris, and J. E. Belz. 2006. “A Global Assessment of the SRTM Performance.”
Photogrammetric Engineering & Remote Sensing 723: 249–60.

Rosette, J. A. B., P. R. J. North, J. C. Suarez, and S. O. Los. 2010. “Uncertainty within Satellite
LiDAR Estimations of Vegetation and Topography.” International Journal of Remote Sensing
31: 1325–42.

Saenger, P., and M. F. Bellan. 1995. The Mangrove Vegetation of the Atlantic Coast of Africa.
Toulouse: Université de Toulouse Press.

Saenger, P., and S. C. Snedaker. 1993. “Pantropical Trends in Mangrove Above-Ground Biomass and
Annual Litterfall.” Oecologia 96: 293–9.

Satyanarayana, B., B. Thierry, Lo D. Seen, A. V. Raman, and G. Muthusankar. 2001. “Remote Sensing
in Mangrove Research-Relationship between Vegetation Indices and Dendrometric Parameters:
A Case for Coringa, East Coast of India.” In Proceedings from the 22nd Asian Conference on
Remote Sensing, November 5–9, 2001. Singapore: Centre for Remote Imaging, Sensing and
Processing.

Schutz, B. E., H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. Dimarzio. 2005. “Overview of the
ICESat Mission.” Geophysical Research Letters 32: L21S01.

Simard, M., V. H. Rivera-Monroy, J. E. Mancera-Pineda, E. Castaneda-Moya, and R. R. Twilley.
2008. “A Systematic Method for 3D Mapping of Mangrove Forests Based on Shuttle Radar
Topography Mission Elevation Data, ICESat/GLAS Waveforms and Field Data: Application to
Cienaga Grande De Santa Marta, Colombia.” Remote Sensing of the Environment 112: 2131–44.

Simard, M., K. Q. Zhang, V. H. Rivera-Monroy, M. S. Ross, P. L. Ruiz, E. Castaneda-Moya, R.
R. Twilley, and E. Rodriguez. 2006. “Mapping Height and Biomass of Mangrove Forests in
Everglades National Park with SRTM Elevation Data.” Photogrammetric Engineering & Remote
Sensing 723: 299–311.

Smith, G. M., T. Spencer, A. L. Murray, and J. R. French. 1998. “Assessing Seasonal Vegetation
Change in Coastal Wetlands with Airborne Remote Sensing: An Outline Methodology.”
Mangroves and Salt Marshes 2: 15–28.

Spalding, M. D., F. Blasco, and C. D. Field, eds. 1997. World Mangrove Atlas. Okinawa: The
International Society for Mangrove Ecosystems.

Sulong, I., H. Mohd-Lokman, K. Mohd-Tarmizi, and A. Ismail. 2002. “Mangrove Mapping
Using Landsat Imagery and Aerial Photographs: Kema-man District, Terengganu, Malaysia.”
Environment, Development and Sustainability 4, no. 2: 135–52.

Tomlinson, P. B. 1994. The Botany of Mangroves. Cambridge: Cambridge University Press.
Traynor, C. H., and T. Hill. 2008. “Mangrove Utilisation and Implications for Participatory Forest

Management, South Africa.” Conservation and Society 62: 109–16.
Tucker, C. J., D. M. Grant, and J. D. Dykstra. 2004. “NASA’s Global Orthorectified Landsat Data

Set.” Photogrammetric Engineering & Remote Sensing 703: 313–22.
Ukpong, I. E. 1995. “An Ordination Study of and Leaf Size Differences in Two Red Mangrove Swamp

Communities in West Africa.” Vegetatio 116: 147–59.
Wang, Y., B. Gregory, N. Jarunee, T. Michael, N. Amani, T. James, H. Lynne, B. Robert, and

M. Vedast. 2003. “Remote Sensing of Mangrove Change along the Tanzania Coast.” Marine
Geodesy 26: 35–48.

Zwally, H. J., R. Schutz, C. Bentley, J. Bufton, T. Herring, J. Minster, J. Spinhirne, and R. Thomas.
2003. GLAS/ICESat L2 Global Land Surface Altimetry Data V018, October 15 to November 18,
2003. Boulder, CO: National Snow and Ice Data Center. Digital media.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l F
or

es
t S

er
vi

ce
 L

ib
ra

ry
] 

at
 1

1:
23

 2
2 

Ja
nu

ar
y 

20
13

 




